direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23×D20, C20⋊2C24, D10⋊1C24, C10.3C25, C24.82D10, C5⋊1(D4×C23), (C23×C4)⋊7D5, C4⋊2(C23×D5), (C23×C20)⋊9C2, (D5×C24)⋊4C2, C10⋊1(C22×D4), C2.4(D5×C24), (C2×C20)⋊14C23, (C22×C10)⋊16D4, (C22×C4)⋊45D10, (C22×D5)⋊7C23, (C2×C10).325C24, (C22×C20)⋊61C22, (C23×D5)⋊22C22, C22.53(C23×D5), C23.346(C22×D5), (C23×C10).115C22, (C22×C10).432C23, (C2×C10)⋊12(C2×D4), (C2×C4)⋊11(C22×D5), SmallGroup(320,1610)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 5150 in 1362 conjugacy classes, 543 normal (9 characteristic)
C1, C2, C2 [×14], C2 [×16], C4 [×8], C22 [×35], C22 [×128], C5, C2×C4 [×28], D4 [×64], C23 [×15], C23 [×168], D5 [×16], C10, C10 [×14], C22×C4 [×14], C2×D4 [×112], C24, C24 [×44], C20 [×8], D10 [×16], D10 [×112], C2×C10 [×35], C23×C4, C22×D4 [×28], C25 [×2], D20 [×64], C2×C20 [×28], C22×D5 [×56], C22×D5 [×112], C22×C10 [×15], D4×C23, C2×D20 [×112], C22×C20 [×14], C23×D5 [×28], C23×D5 [×16], C23×C10, C22×D20 [×28], C23×C20, D5×C24 [×2], C23×D20
Quotients:
C1, C2 [×31], C22 [×155], D4 [×8], C23 [×155], D5, C2×D4 [×28], C24 [×31], D10 [×15], C22×D4 [×14], C25, D20 [×8], C22×D5 [×35], D4×C23, C2×D20 [×28], C23×D5 [×15], C22×D20 [×14], D5×C24, C23×D20
Generators and relations
G = < a,b,c,d,e | a2=b2=c2=d20=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
(1 156)(2 157)(3 158)(4 159)(5 160)(6 141)(7 142)(8 143)(9 144)(10 145)(11 146)(12 147)(13 148)(14 149)(15 150)(16 151)(17 152)(18 153)(19 154)(20 155)(21 114)(22 115)(23 116)(24 117)(25 118)(26 119)(27 120)(28 101)(29 102)(30 103)(31 104)(32 105)(33 106)(34 107)(35 108)(36 109)(37 110)(38 111)(39 112)(40 113)(41 74)(42 75)(43 76)(44 77)(45 78)(46 79)(47 80)(48 61)(49 62)(50 63)(51 64)(52 65)(53 66)(54 67)(55 68)(56 69)(57 70)(58 71)(59 72)(60 73)(81 122)(82 123)(83 124)(84 125)(85 126)(86 127)(87 128)(88 129)(89 130)(90 131)(91 132)(92 133)(93 134)(94 135)(95 136)(96 137)(97 138)(98 139)(99 140)(100 121)
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 57)(8 58)(9 59)(10 60)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 95)(22 96)(23 97)(24 98)(25 99)(26 100)(27 81)(28 82)(29 83)(30 84)(31 85)(32 86)(33 87)(34 88)(35 89)(36 90)(37 91)(38 92)(39 93)(40 94)(61 153)(62 154)(63 155)(64 156)(65 157)(66 158)(67 159)(68 160)(69 141)(70 142)(71 143)(72 144)(73 145)(74 146)(75 147)(76 148)(77 149)(78 150)(79 151)(80 152)(101 123)(102 124)(103 125)(104 126)(105 127)(106 128)(107 129)(108 130)(109 131)(110 132)(111 133)(112 134)(113 135)(114 136)(115 137)(116 138)(117 139)(118 140)(119 121)(120 122)
(1 131)(2 132)(3 133)(4 134)(5 135)(6 136)(7 137)(8 138)(9 139)(10 140)(11 121)(12 122)(13 123)(14 124)(15 125)(16 126)(17 127)(18 128)(19 129)(20 130)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(33 61)(34 62)(35 63)(36 64)(37 65)(38 66)(39 67)(40 68)(41 119)(42 120)(43 101)(44 102)(45 103)(46 104)(47 105)(48 106)(49 107)(50 108)(51 109)(52 110)(53 111)(54 112)(55 113)(56 114)(57 115)(58 116)(59 117)(60 118)(81 147)(82 148)(83 149)(84 150)(85 151)(86 152)(87 153)(88 154)(89 155)(90 156)(91 157)(92 158)(93 159)(94 160)(95 141)(96 142)(97 143)(98 144)(99 145)(100 146)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 55)(2 54)(3 53)(4 52)(5 51)(6 50)(7 49)(8 48)(9 47)(10 46)(11 45)(12 44)(13 43)(14 42)(15 41)(16 60)(17 59)(18 58)(19 57)(20 56)(21 89)(22 88)(23 87)(24 86)(25 85)(26 84)(27 83)(28 82)(29 81)(30 100)(31 99)(32 98)(33 97)(34 96)(35 95)(36 94)(37 93)(38 92)(39 91)(40 90)(61 143)(62 142)(63 141)(64 160)(65 159)(66 158)(67 157)(68 156)(69 155)(70 154)(71 153)(72 152)(73 151)(74 150)(75 149)(76 148)(77 147)(78 146)(79 145)(80 144)(101 123)(102 122)(103 121)(104 140)(105 139)(106 138)(107 137)(108 136)(109 135)(110 134)(111 133)(112 132)(113 131)(114 130)(115 129)(116 128)(117 127)(118 126)(119 125)(120 124)
G:=sub<Sym(160)| (1,156)(2,157)(3,158)(4,159)(5,160)(6,141)(7,142)(8,143)(9,144)(10,145)(11,146)(12,147)(13,148)(14,149)(15,150)(16,151)(17,152)(18,153)(19,154)(20,155)(21,114)(22,115)(23,116)(24,117)(25,118)(26,119)(27,120)(28,101)(29,102)(30,103)(31,104)(32,105)(33,106)(34,107)(35,108)(36,109)(37,110)(38,111)(39,112)(40,113)(41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(81,122)(82,123)(83,124)(84,125)(85,126)(86,127)(87,128)(88,129)(89,130)(90,131)(91,132)(92,133)(93,134)(94,135)(95,136)(96,137)(97,138)(98,139)(99,140)(100,121), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,95)(22,96)(23,97)(24,98)(25,99)(26,100)(27,81)(28,82)(29,83)(30,84)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,91)(38,92)(39,93)(40,94)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,141)(70,142)(71,143)(72,144)(73,145)(74,146)(75,147)(76,148)(77,149)(78,150)(79,151)(80,152)(101,123)(102,124)(103,125)(104,126)(105,127)(106,128)(107,129)(108,130)(109,131)(110,132)(111,133)(112,134)(113,135)(114,136)(115,137)(116,138)(117,139)(118,140)(119,121)(120,122), (1,131)(2,132)(3,133)(4,134)(5,135)(6,136)(7,137)(8,138)(9,139)(10,140)(11,121)(12,122)(13,123)(14,124)(15,125)(16,126)(17,127)(18,128)(19,129)(20,130)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,61)(34,62)(35,63)(36,64)(37,65)(38,66)(39,67)(40,68)(41,119)(42,120)(43,101)(44,102)(45,103)(46,104)(47,105)(48,106)(49,107)(50,108)(51,109)(52,110)(53,111)(54,112)(55,113)(56,114)(57,115)(58,116)(59,117)(60,118)(81,147)(82,148)(83,149)(84,150)(85,151)(86,152)(87,153)(88,154)(89,155)(90,156)(91,157)(92,158)(93,159)(94,160)(95,141)(96,142)(97,143)(98,144)(99,145)(100,146), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,55)(2,54)(3,53)(4,52)(5,51)(6,50)(7,49)(8,48)(9,47)(10,46)(11,45)(12,44)(13,43)(14,42)(15,41)(16,60)(17,59)(18,58)(19,57)(20,56)(21,89)(22,88)(23,87)(24,86)(25,85)(26,84)(27,83)(28,82)(29,81)(30,100)(31,99)(32,98)(33,97)(34,96)(35,95)(36,94)(37,93)(38,92)(39,91)(40,90)(61,143)(62,142)(63,141)(64,160)(65,159)(66,158)(67,157)(68,156)(69,155)(70,154)(71,153)(72,152)(73,151)(74,150)(75,149)(76,148)(77,147)(78,146)(79,145)(80,144)(101,123)(102,122)(103,121)(104,140)(105,139)(106,138)(107,137)(108,136)(109,135)(110,134)(111,133)(112,132)(113,131)(114,130)(115,129)(116,128)(117,127)(118,126)(119,125)(120,124)>;
G:=Group( (1,156)(2,157)(3,158)(4,159)(5,160)(6,141)(7,142)(8,143)(9,144)(10,145)(11,146)(12,147)(13,148)(14,149)(15,150)(16,151)(17,152)(18,153)(19,154)(20,155)(21,114)(22,115)(23,116)(24,117)(25,118)(26,119)(27,120)(28,101)(29,102)(30,103)(31,104)(32,105)(33,106)(34,107)(35,108)(36,109)(37,110)(38,111)(39,112)(40,113)(41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(81,122)(82,123)(83,124)(84,125)(85,126)(86,127)(87,128)(88,129)(89,130)(90,131)(91,132)(92,133)(93,134)(94,135)(95,136)(96,137)(97,138)(98,139)(99,140)(100,121), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,95)(22,96)(23,97)(24,98)(25,99)(26,100)(27,81)(28,82)(29,83)(30,84)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,91)(38,92)(39,93)(40,94)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,141)(70,142)(71,143)(72,144)(73,145)(74,146)(75,147)(76,148)(77,149)(78,150)(79,151)(80,152)(101,123)(102,124)(103,125)(104,126)(105,127)(106,128)(107,129)(108,130)(109,131)(110,132)(111,133)(112,134)(113,135)(114,136)(115,137)(116,138)(117,139)(118,140)(119,121)(120,122), (1,131)(2,132)(3,133)(4,134)(5,135)(6,136)(7,137)(8,138)(9,139)(10,140)(11,121)(12,122)(13,123)(14,124)(15,125)(16,126)(17,127)(18,128)(19,129)(20,130)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,61)(34,62)(35,63)(36,64)(37,65)(38,66)(39,67)(40,68)(41,119)(42,120)(43,101)(44,102)(45,103)(46,104)(47,105)(48,106)(49,107)(50,108)(51,109)(52,110)(53,111)(54,112)(55,113)(56,114)(57,115)(58,116)(59,117)(60,118)(81,147)(82,148)(83,149)(84,150)(85,151)(86,152)(87,153)(88,154)(89,155)(90,156)(91,157)(92,158)(93,159)(94,160)(95,141)(96,142)(97,143)(98,144)(99,145)(100,146), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,55)(2,54)(3,53)(4,52)(5,51)(6,50)(7,49)(8,48)(9,47)(10,46)(11,45)(12,44)(13,43)(14,42)(15,41)(16,60)(17,59)(18,58)(19,57)(20,56)(21,89)(22,88)(23,87)(24,86)(25,85)(26,84)(27,83)(28,82)(29,81)(30,100)(31,99)(32,98)(33,97)(34,96)(35,95)(36,94)(37,93)(38,92)(39,91)(40,90)(61,143)(62,142)(63,141)(64,160)(65,159)(66,158)(67,157)(68,156)(69,155)(70,154)(71,153)(72,152)(73,151)(74,150)(75,149)(76,148)(77,147)(78,146)(79,145)(80,144)(101,123)(102,122)(103,121)(104,140)(105,139)(106,138)(107,137)(108,136)(109,135)(110,134)(111,133)(112,132)(113,131)(114,130)(115,129)(116,128)(117,127)(118,126)(119,125)(120,124) );
G=PermutationGroup([(1,156),(2,157),(3,158),(4,159),(5,160),(6,141),(7,142),(8,143),(9,144),(10,145),(11,146),(12,147),(13,148),(14,149),(15,150),(16,151),(17,152),(18,153),(19,154),(20,155),(21,114),(22,115),(23,116),(24,117),(25,118),(26,119),(27,120),(28,101),(29,102),(30,103),(31,104),(32,105),(33,106),(34,107),(35,108),(36,109),(37,110),(38,111),(39,112),(40,113),(41,74),(42,75),(43,76),(44,77),(45,78),(46,79),(47,80),(48,61),(49,62),(50,63),(51,64),(52,65),(53,66),(54,67),(55,68),(56,69),(57,70),(58,71),(59,72),(60,73),(81,122),(82,123),(83,124),(84,125),(85,126),(86,127),(87,128),(88,129),(89,130),(90,131),(91,132),(92,133),(93,134),(94,135),(95,136),(96,137),(97,138),(98,139),(99,140),(100,121)], [(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,57),(8,58),(9,59),(10,60),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,95),(22,96),(23,97),(24,98),(25,99),(26,100),(27,81),(28,82),(29,83),(30,84),(31,85),(32,86),(33,87),(34,88),(35,89),(36,90),(37,91),(38,92),(39,93),(40,94),(61,153),(62,154),(63,155),(64,156),(65,157),(66,158),(67,159),(68,160),(69,141),(70,142),(71,143),(72,144),(73,145),(74,146),(75,147),(76,148),(77,149),(78,150),(79,151),(80,152),(101,123),(102,124),(103,125),(104,126),(105,127),(106,128),(107,129),(108,130),(109,131),(110,132),(111,133),(112,134),(113,135),(114,136),(115,137),(116,138),(117,139),(118,140),(119,121),(120,122)], [(1,131),(2,132),(3,133),(4,134),(5,135),(6,136),(7,137),(8,138),(9,139),(10,140),(11,121),(12,122),(13,123),(14,124),(15,125),(16,126),(17,127),(18,128),(19,129),(20,130),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(33,61),(34,62),(35,63),(36,64),(37,65),(38,66),(39,67),(40,68),(41,119),(42,120),(43,101),(44,102),(45,103),(46,104),(47,105),(48,106),(49,107),(50,108),(51,109),(52,110),(53,111),(54,112),(55,113),(56,114),(57,115),(58,116),(59,117),(60,118),(81,147),(82,148),(83,149),(84,150),(85,151),(86,152),(87,153),(88,154),(89,155),(90,156),(91,157),(92,158),(93,159),(94,160),(95,141),(96,142),(97,143),(98,144),(99,145),(100,146)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,55),(2,54),(3,53),(4,52),(5,51),(6,50),(7,49),(8,48),(9,47),(10,46),(11,45),(12,44),(13,43),(14,42),(15,41),(16,60),(17,59),(18,58),(19,57),(20,56),(21,89),(22,88),(23,87),(24,86),(25,85),(26,84),(27,83),(28,82),(29,81),(30,100),(31,99),(32,98),(33,97),(34,96),(35,95),(36,94),(37,93),(38,92),(39,91),(40,90),(61,143),(62,142),(63,141),(64,160),(65,159),(66,158),(67,157),(68,156),(69,155),(70,154),(71,153),(72,152),(73,151),(74,150),(75,149),(76,148),(77,147),(78,146),(79,145),(80,144),(101,123),(102,122),(103,121),(104,140),(105,139),(106,138),(107,137),(108,136),(109,135),(110,134),(111,133),(112,132),(113,131),(114,130),(115,129),(116,128),(117,127),(118,126),(119,125),(120,124)])
Matrix representation ►G ⊆ GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 40 | 0 | 0 |
0 | 0 | 8 | 34 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 39 |
0 | 0 | 0 | 0 | 2 | 16 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 33 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 40 | 0 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,8,0,0,0,0,40,34,0,0,0,0,0,0,28,2,0,0,0,0,39,16],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,33,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,40,0] >;
104 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2AE | 4A | ··· | 4H | 5A | 5B | 10A | ··· | 10AD | 20A | ··· | 20AF |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 10 | ··· | 10 | 2 | ··· | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
104 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | D5 | D10 | D10 | D20 |
kernel | C23×D20 | C22×D20 | C23×C20 | D5×C24 | C22×C10 | C23×C4 | C22×C4 | C24 | C23 |
# reps | 1 | 28 | 1 | 2 | 8 | 2 | 28 | 2 | 32 |
In GAP, Magma, Sage, TeX
C_2^3\times D_{20}
% in TeX
G:=Group("C2^3xD20");
// GroupNames label
G:=SmallGroup(320,1610);
// by ID
G=gap.SmallGroup(320,1610);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,1684,102,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^20=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations